miércoles, 22 de octubre de 2014

Misidentification of Diphyllobothrium Species Related to Global Fish Trade, Europe - Volume 20, Number 11—November 2014 - Emerging Infectious Disease journal - CDC

Misidentification of Diphyllobothrium Species Related to Global Fish Trade, Europe - Volume 20, Number 11—November 2014 - Emerging Infectious Disease journal - CDC



Volume 20, Number 11—November 2014

Letter

Misidentification of Diphyllobothrium Species Related to Global Fish Trade, Europe

On This Page

Figures

Technical Appendicies

To the Editor: Diphyllobothriosis, infection by tapeworms of the genus Diphyllobothrium (Cestoda: Diphyllobothriidea) (1), is a well-known disease of humans. In Europe, infections caused by 3 species ofDiphyllobothrium have recently been reported in humans: D. latum is considered to be the principal species infecting persons in Europe (1); 4 cases of D. dendriticum infection and 6 cases of D. nihonkaiense infection have also been reported (2,3). Except for those caused by D. latum, which is autochthonous in northeastern Europe and subalpine lakes, most of the cases in Europe have been imported or caused by consumption of fish imported from areas to which the parasites are endemic (1,3,4).
Diphyllobothriosis is not endemic to Spain, but 7 cases of D. latum infection have been reported there (Technical Appendix[PDF - 265 KB - 3 pages] Table). Most recently, Pastor-Valle et al. confirmed, using molecular tools, an imported case of infestation by Diplogonoporus balaenopterae and 3 imported cases of diphyllobothriosis caused by D. pacificum (5), a tapeworm endemic to the Pacific coast of South America (1,4).
Specific identification of most human-infecting Diphyllobothrium tapeworms based on clinical material is virtually impossible (1,3); the only exception is identifying the Pacific broad tapeworm, D. pacificum. This tapeworm can be easily distinguished from other human-infecting diphyllobothriideans by the presence of pits alongside the median line on the ventral surface of its proglottids; smaller, more spherical, eggs; and the almost equatorial position of the genital pore, a feature that is markedly pre-equatorial in other species (Technical Appendix[PDF - 265 KB - 3 pages] Figure 1). Several hundred cases of infection by this species have been reported from Peru, and a few reports have been made from Ecuador, Chile, and Japan (1). The life cycle of D. pacificum is not completely known, but several species of marine fish have been identified as sources of human infection in Peru (4).
Thumbnail of Bayesian inference phylogenetic analysis of selected human diphyllobothrideans based on cox1 gene analyzed as 3 independent data parts according to the nucleotide coding positions by using (GTR+G)(HKY)(GTR+G) evolutionary model setup in MrBayes (mrbayes.sourceforge.net). Topologies sampled every 1,000th generation over 4 runs and 20,000,000 generations, burn-in 25%. Diphyllobothrium pacificum identified in Spain marked in gray; new sequence is in bold type. Scale bar indicates nucle
Figure. Bayesian inference phylogenetic analysis of selected human diphyllobothrideans based on cox1 gene analyzed as 3 independent data parts according to the nucleotide coding positions by using (GTR+G)(HKY)(GTR+G) evolutionary model setup in...
We critically examined all recent records of diphyllobothriosis in Spain to clarify species identification because published morphologic data indicated misdiagnosis (Technical Appendix[PDF - 265 KB - 3 pages] Table). Tapeworms detected in 2 recent human cases reported by Colomina et al. (6) and Esteban et al. (7), described asD. latum, resembled those of D. pacificum because of the morphology of proglottids and eggs (6,7). Therefore, we requested material of these cestodes for scrutiny. Morphologic and molecular evaluation (partial lsrDNA andcox1 gene sequences; multiplex PCR testing by Wicht et al. (8), (FigureTechnical Appendix[PDF - 265 KB - 3 pages] Figures 1, 2) actually confirmed that D. pacificum was misidentified as D. latum in both cases, despite the molecular identification through multiplex PCR.
No voucher specimens for re-identification were available for another 2 alleged cases of D. latum infection (Technical Appendix[PDF - 265 KB - 3 pages] Table). However, the eggs reported in the study by Gil-Setas et al. were more similar in shape and size to those of D. nihonkaiense or Diplogonoporus balaenoterae than to those ofD. latum (9).
D. latum is the principal causative agent of human diphyllobothriosis; its fish intermediate hosts are perch, pike, burbot, and ruff in Europe (1,4). Other fish, such as salmonids and marine fish, cannot transmit this parasite and serve as intermediate hosts of other species of Diphyllobothrium and Diplogonoporus (4).
The information on the spectrum of its fish intermediate hosts of D. pacificum is limited. From very scarce anamnestic data about individual case-patients infected with D. pacificum in Spain, it is not possible to unravel the actual source of their infection. However, it is obvious that the recent emergence of diphyllobothriosis caused by nonendemic species such as D. pacificumD. dendriticum (3), D. nihonkaiense (2), and D. balanopterae (5) is related to the global importation of fish that have not been frozen. If the fish are merely chilled, plerocercoids of diphyllobothriids may survive for several days (10).
Spain is the third largest importer of fish and seafood in the world; the value of fish products imported from >104 countries reached $7 billion (US) in 2011 and increases continuously. More than 200,000 tons of fresh or chilled fish, which may serve as source of human fishborne diseases if eaten raw or undercooked, are imported to Spain every year. The fourth largest importer is Ecuador, the sixth is Chile, and the seventh is Peru; D. pacificum is endemic to each of these countries (4).
In the present study, we confirmed human infections with the Pacific broad tapeworm, D. pacificum, in Europe, but it is highly probable that this species can be introduced anywhere through the importation of fresh or chilled fish from the Pacific coast of South America. This has implications for food safety rules and human health risk measures taken by national health and veterinary agencies. Regarding adequate processing of clinical samples and their preservation for morphologic and genetic evaluation, we strongly recommend fixation of positive fecal samples with eggs or segments (proglottids) immediately with 96%–99% molecular grade (i.e., not denatured) ethanol for future molecular diagnosis (1,4,8).
Roman KuchtaComments to Author , José-Guillermo Esteban, Jan Brabec, and Tomáš Scholz
Author affiliations: Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic (R. Kuchta, J. Brabec, T. Scholz)Facultad de Farmacia, Universidad de Valencia, Valencia, Spain (J.-G.Esteban)

Acknowledgment

This work was supported by the Czech Science Foundation (grant number P506/12/1632) and the Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic (grant number RVO: 60077344).

References

  1. Scholz TGarcia HHKuchta RWicht BUpdate on the human broad tapeworm (genus Diphyllobothrium), including clinical relevance. Clin Microbiol Rev2009;22:14660DOIPubMed
  2. de Marval FGottstein BWeber MWicht B. Imported diphyllobothriasis in Switzerland: molecular methods to define a clinical case ofDiphyllobothrium infection as Diphyllobothrium dendriticum, August 2010. Eurosurveillance. 2013;18:31–6.
  3. Kuchta RBrabec JKubáčková PScholz TTapeworm Diphyllobothrium dendriticum (Cestoda)—neglected or emerging human parasite? PLoS Negl Trop Dis2013;7:e2535DOIPubMed
  4. Kuchta RScholz TBrabec JWicht B. Chapter 16. Diphyllobothrium, Diplogonoporus, and Spirometra. In: Xiao L, Ryan U, Feng Y, editors. Biology of foodborne parasites, section III: Important foodborne helminths. London: CRC Press; (in press).
  5. Pastor-Valle JGonzález LMMartín-Clemente JPMerino FJGottstein BGárate T. Molecular diagnosis of diphyllobothriasis in Spain, most presumably acquired via imported fish, or sojourn abroad. New Microbes and New Infections. 2014;2:1–6.
  6. Colomina JVillar JEsteban GAsymptomatic infection by Diphyllobothrium latum in a Spanish 3-year-old child [in Spanish]Med Clin (Barc).2002;118:279DOIPubMed
  7. Esteban JGMunoz-Antoli CBorras MColomina JToledo RHuman infection by a “fish tapeworm”, Diphyllobothrium latum, in a non-endemic country. Infection2014;42:1914DOIPubMed
  8. Wicht BYanagida TScholz TIto AJimenez JABrabec JMultiplex PCR for differential identification of broad tapeworms (Cestoda:Diphyllobothrium) infecting humans. J Clin Microbiol2010;48:31116DOIPubMed
  9. Gil-Setas AMazón APascual PSagua HHelminthiasis in a 71-year-old man, an infrequent condition in our setting [in Spanish]Enferm Infecc Microbiol Clin2004;22:5534DOIPubMed
  10. Salminen K. The effect of high and low temperature on the infestiveness of Diphyllobothrium latum with regard to public health [dissertation]. Helsinki: College of Veterinary Medicine; 1970.https://openlibrary.org/works/OL6530111W/The_effect_of_high_and_low_temperature_treatments_on_the_infestiveness_of_Diphyllobothrium_latum_wit

Figure

Technical Appendix

Suggested citation for this article: Kuchta R, Esteban JG, Brabec J, Scholz T. Misidentification of Diphylobothrium species related to global fish trade [letter]. Emerg Infect Dis. 2014 Nov [date cited]. http://dx.doi.org/10.3201/eid2011.140996


DOI: 10.3201/eid2011.140996

No hay comentarios:

Publicar un comentario